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Particle drag retardation of 
smoothing and sintering 

surface 
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Diffusion-controlled capillarity phenomena in solids, including sintering and surface 
profile changes, can be retarded by dispersed particles which are pinned at the surfaces. 
A model is proposed which predicts that dispersed particles which are more wetted by 
the substrate material, and subsequently partially imbedded, will tend to have a lower 
mobility than particles which are less wetted, if the force exerted on the particles by the 
moving interface is sufficiently low that the particles are dragged by the surface. On the 
other hand, less wetted immobile particles can provide a greater restraining force than 
more wetted particles. For a given volume of dispersoid per unit area of substrate, larger 
particles will provide a greater restraint to interfacial motion. Particle drag at the surface 
is probably not very effective in retarding sintering brought about by grain-boundary and 
volume diffusion. Surface diffusion-controlled sintering and surface-shape changes can be 
strongly retarded by dispersed particles. 

1. Introduction 
It has been observed for a number of years that a 
dispersion of second phase particles retards densi- 
fication during sintering [ 1 - 8 ] ,  and it has been 
postulated that the particles cause a dispersion 
hardening of the material, thus inhibiting plastic 
flow contributions to sintering [4]. While this may 
be so, there are circumstances under which the 
retardation may be caused by dragging of second- 
phase particles by the surface of the sintering 
material. This is entirely analogous to the com- 
monly observed retardation of grain growth due 
to the presence of a dispersed second phase, which 
has been treated theoretically [9-11] .  It is the 
purpose of the present paper to propose a model 
for the mobility of particles pinned at a free sur- 
face as the surface moves normal to itself under 
the action of capillarity forces. This model will 
then be related to initial-stage sintering and 
smoothing of sinusoidal surfaces. 

Tikkanen et al. [2] studied densification of 
porous compacts of Co and Ni containing dis- 
persions of MgO and CaO. They prepared their 
compacts by first calcining CoO plus MgCO3, for 

example, grinding the resulting powder and 
reducing it in H 2. This produced a fine dispersion 
of oxide, probably mostly on the metal particles. 
They observed that the more wetted oxide, that 
is, MgO in the case of Co, and CaO in the case of 
Ni, had the greater effect in the sintering retarda- 
tion. 

Kuczynski and Lavendel [12] proposed a 
model for retardation of sintering by particles 
which are immobile as the surface moves, and 
concluded that nonwetted particles would retard 
sintering more than wetted particles. In their 
model the particles had to be covered by the metal 
if the interface was to advance. The present model 
is for the case when the particles are dragged by 
the surface as it advances or recedes. 

2. Model for particle mobility 
It will be assumed that all surface tensions are 
isotropic and, therefore, all surfaces of the par- 
ticles are spherical. It will be furthermore assumed 
that all interfacial angles are always at their 
equilibrium value. The geometry of a particle in 
the surface of a substrate is shown in Fig. 1 in 
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Ngure 1 Inert particle pinned to an advancing surface. 
The surface energies of the substrate and particle are 
"r~ and "r respectively; the interfacial energy between 
these is %. 

which the surface is dragging the particle in the 
upward direction. The force exerted by the surface 
on the particle is given by 

f = 27ra71 s ins  (1) 

where a and c~ are defined in Fig. 1, and 7~ is the 
surface tension of the substrate material. The 
volume of the particle will be assumed to remain 
constant and is given by 

V = 37rr~ C (2)  
3 

where 

C -  
sin 3 (02 - -  ~) 

[1 + cos (03 + ~)]~ 
sin 3 (03 + a)  

[2 -- cos (03 + a)] (3) 

+ [1  + c o s  ( 0 2  - ~ ) 1 2  [ 2  - c o s  ( 0 2  - ~)] 

and r2, 02 and 03 are defined in Fig. i .  Since 
a = r 2  sin(02 - - a ) ,  we can define a dimensionless 
force, using Equation 2, as follows: 

F =- f 27r [3V~ I/3 
sin (02-- oz) sin a (4) 

where ao is the value of  a at a = 0. 
An equation for the velocity of  the particle can 

be derived employing an approach reminiscent o f  
Shewmon's [9] t reatment  of  a particle or void 
dragged by a moving grain boundary,  Consider 
first the case when /32 < rr/2. As the particle 
moves an amount  dz, a volume dV of  material 
must flow in behind it, if  the surface is advancing, 
or out from in front of  it, if  the surface is re- 
ceding. The flux equation for this mass flow, 
assuming that diffusion in the interface between 

the particle and the substrate material is rate 
limiting, is 

Di 
/ - ~ 7 - r  V ,  (5) 

where/" is the atomic flux per unit area per unit 
time, D i is the interracial diffusion coefficient, 
~2 is the atomic volume of  the rate limiting dif- 
fusing species, and V# is the gradient in the chemi- 
cal potential of  the diffusing species. It is assumed 
that the latter quantity can be given with suf- 
ficient accuracy as the force on the particle 
divided by the maximum cross-sectional area of  
the particle in contact with the matrix, with the 
average diffusion distance equal to 32r2/2. Thus, 
for/32 < rr/2, 

2s 
Vt~ -~ zr/32r~ sin2132. (6) 

The incremental volume, d V, which must be 
transported as the particle moves an amount dz, 
is given by 

dV = rr(r2sin/32) 2dz = 21rr2sin1326jm~Zdt 

(7) 
where 6 is the width of the region of  enhanced 
diffusion at the interface between the particle and 
substrate, and ]m is the flux at the line of  maxi- 
mum girth between the particle and the substrate. 
Rearranging Equation 7 and employing Equations 
5 and 6, the velocity of  the particle is 

dz 4~26 D i f  
- -  _ . 

u - dt lrkT/32r42sin3/32 (8) 

Carrying Shewmon's results to the same point 
would give unity in place of  4/~r. 

A dimensionless velocity can be defined as 
follows, using Equations 2 and 4: 

kTag 87rag Csin (02 - - a )  s ina  
U ~  = 

7~2~iD i u 3 V/32 sin3/32 

(9) 
For /32 ~> 7r/2, sin/32 is replaced by unity in Equa- 
tions 6, 7, 8 and 9. 

A dimensionless mobili ty can be defined as 

U kTa a u 
M - -  - = ( 1 0 )  

F ~6Di  ' f 

This is plotted in Fig. 2 for various values of  02 
and 03. The curves terminate either when the 
magnitude of F reaches a maximum, or when the 
curve exceeds the boundaries of  the plot. 
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Figure 2 Plot of dimensionless mobility versus force for 
particles pinned to a moving surface. Positive branches of 
the curves terminate at maximum possible restraining 
force that the particles can exert on the surface. A nega- 
tive force means a receding interface. 02 and 03 are 
defined in Fig. 1. Curves A and B are for symmetric 
lenticular particles; C and D are for less wetted and' 
greater wetted particles, respectively. 

A number of  conclusions can be drawn from 
Fig. 2. Non-wetted particles can restrain greater 
forces than wetted particles for advancing inter- 
faces, in agreement with Kuczynski and Lavendel's 
model [12].  However, the mobility of  non- 
wetted particles is very high for receding inter- 
faces. The wetted particles are far superior in 
restraining receding interfaces both in mobility 
and in the magnitude of  maximum restraint 
possible. It can be noted at this point that sin- 
tering involves both advancing and receding 
interfaces. 

3. Smoothing of a sinusoidal surface 
The foregoing results can be applied in a straight- 
forward manner to the surface-smoothing models 
o f  Mullins [13].  The following treatment assumes 
that surface diffusion is the primary mechanism of 
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surface smoothing; extension to vapour transport 
and volume diffusion is trivial. 

The flux equation for surface diffusion on a 
sinusoidal surface is 

D s dp 
j ~ (11) 

k T  dx 

where Ds is the surface self-diffusion coeffic{ent, 
p is the pressure beneath the surface, which is 
assigned positive values under convex portions of  
the surface. The presence of  uniformly distributed 
identical particles attached to the surface will 
yield a drag which can be represented as a back- 
pressure on the pressure generated by the curva- 
ture, as follows: 

p = - 7 1 K  + f A  r (12) 

where K is the local value of  the curvature and N 
is the number of  particles per unit area. It is 
assumed that this equation holds, provided the 
interparticle spacing is less than about 10% of  the 
surface-profile wavelength. The surface profile is 
given by 

z(x, t) = A(t) sincox (13) 

where A(t) is the time-dependent amplitude and co 
is the angular frequency of  the surface profile. In 
the small slope approximation (amplitude much 
less than wavelength), K ~ d2z/dx 2, which gives 

p ~ 7Aco2 sin cox + f N  (14) 

where A has been written instead of  A(t) for 
simplicity. The velocity of  a surface element is 

dz _ a 2  u d_[ (15) 
dt dx 

where u is the surface concentration of  diffusing 
atoms. Substituting Equations 11 and 14, and 
performing the indicated operations, gives 

dtdZ ~22uDs(_TAco4sincox+Nd2f)kT dx 2 �9 

(16) 

If particles are being dragged by the surface, the 
particle velocity and the surface-element velocity 
are equal and Equation 16 becomes 

NB d2u 
u = --ABco4sin cox + dx 2 (17) 

")'rn 

where B =- 7~22uDs/kT and use has been made of  
the definition of  mobility, m =-u/f. The solution 
of  this equation is 



ABco 4 sin cox 
u - 1 + (NBco2/m'y) " (18) 

The rate of decay of the amplitude, dA/d t ,  is the 
value of u at the maxima of the surface profile, 
where sin cox = 1. Using Equation 10, 

dA ABco 4 

= -- 1 + (Wa4ocoZ/RDM) (19) 

where RD -=-= 6Di/f2uDs. This differs from Mullins' 
result by the added term in the denominator. 

It is instructive to examine the effectiveness of 
surface particles in retarding surface smoothing. 
Consider first the minimum wavelength for which 
no part of the surface is moving fast enough to 
break away from the particles. The corresponding 
angular frequency will be called coc ; particles will 
be dragged by the surface if co < coe- The fol- 
lowing treatment applies to those particles for 
which the mobility is approximately equal for 
both advancing and receding interfaces (see Fig. 
2). Let the amplitude and wavelength of the 
profile be related through g --- Aco and define v -  
coegZ/3/NUZ R~/6and w =-aoNU2/R~6gV3. Using 
these and the first parts of Equations 9 and 10, 
Equation 19 can be rearranged to give the fol- 
lowing: 

v a - F m w v  2 -- U m w  -3 = 0 (20) 

where Fm and Um are the magnitudes of the 
breakaway dimensionless force and velocity, 
respectively. Note that g is not independent of 

time; it is merely a convenience to give Equation 
20 a simple form, and decreases with time. 

Fig. 3 shows Equation 20 plotted for 02 = 60 ~ 
and 03 = 150~ the region beneath the curve 
represents conditions under which the surface 
would drag all particles. The small slope approxi- 
mation [13] requiresg < rr/5. The model probably 
requires that particle spacing is substantially less 
than the surface wavelength (say co < N1/2/2),  and 
the particles cannot overlap (say a0 < (3NU2)-l). 
Using these, the model should be valid for 
v < 0.4R~ u6 and w < (3R~6gl /a)  -1. Breakaway is 
not anticipated under most experimental con- 
ditions. 

Assuming that the particles are retained by the 
surface, the expected influence of dispersed 
particles on the rate of amplitude decay can be 
examined. Equation 19 can be written as 

A= A 
1 + (Na4co~/RD M )  (21) 

where Ao is the amplitude decay rate without 
particles. Besides the obvious relationships shown 
in this equation, note that the volume of dispersed 
phase per unit area is proportional to Na3o, so that 
the second term in the denominator is pro- 
portional to the dispersed particle size for any 
given system at constant volume of dispersed 
phase. Thus, spontaneous coarsening of the 
dispersed particles would produce a decrease in 
A / A o  with time. Based on the restrictions on 
particle spacing and size discussed above, the 
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Figure 3 Breakaway curve for sinu- 
soidal surfaces, Equation 20, for 
0 2 = 6 0  ~ and 0 ~ = 1 5 0  ~ . The region 
beneath the curve represents con- 
ditions under which the surface would 
drag all particles. 

2315 



minimum value of ~i/Ao obtainable under the 
most favorable conditions (nearly dense packing of 
large particles) is (1 +0.003/RDM) -1, or, in 
other words, R D must be less than 10 .3 in order 
for the particles to have a significant effect. Of 
course, greater reductions in decay rate would be 
realized for larger particles (at the required lower 
particle density) than those for which the current 
model would be applicable. 

4 .  S i n t e r i n g  
Particle drag can be incorporated into the initial 
stage sintering models [14]. These models describe 
the first few percent of linear shrinkage of a com- 
pact of uniform spheres, or a pair of spheres of 
equal size, and the formation of a neck between 
pairs of spheres. At first, it will be assumed that 
the sintering takes place by a combination of 
volume and grain-boundary diffusion, with no sur- 
face-diffusion contribution. It will be assumed that 
all of the material to build the neck between the 
spheres is transported from the grain boundary in 
the neck. The model is based upon the sintering 
model presented earlier [14], and is identical to 
it, except for the incorporation of a drag force 
caused by the presence of a surface dispersion of 
particles. It is assumed that the particles are 
uniformly distributed over the surface of the neck, 
and that the surface dispersoid particle density is 
fixed with time. Neither of these can be precisely 
true because of the nature of evolution of the 
neck, but the calculation will, nevertheless, permit 
a fairly accurate estimation of the effectiveness of 
particles in retarding sintering by this mechanism. 

The atomic flux equation for either grain- 
boundary or volume diffusion of atoms from the 
grain boundary to the neck surface is given by 

D 
] = -- kt Vp(r) (22) 

where D is either the grain-boundary or volume- 
diffusion coefficient and r is the radial distance 
from the centre of the neck. Material continuity 
requires that the divergence of the flux be con- 
stant, or, 

V~p(r) = constant. (23) 

The boundary conditions are Equation 12 and the 
following: 

@(0)  
- 0 (24)  

dr 
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and 
X 

fo rpdr = vx. (2s) 

The solution of Equation 23, subject to these 
boundary conditions, is 

47D(XkTx=p+ O) [1 Nfxp _] 
] -  "/(-x ~ ~o)| ' (26) 

where K = 1/0 -- 1Ix, P is the minimum radius of 
curvature of the neck surface, and x is the neck 
radius. The grain-boundary groove at the neck 
surface has been neglected; its effect on sintering 
kinetics is small. Assuming that the chemical 
potential gradients for grain-boundary and volume 
diffusion are the same, the total flux arriving at 
the neck surface is 

J = iT(AnDv + 2rrxbDb) (x + P) [ 7(1N]:xP]+ P) 

(27), 

where An is the neck surface a r e a -  the area for 
volume diffusion - Dv and D b are the volume and 
grain-boundary diffusion coefficients, respectively, 
and b is the region of enhanced diffusion at t h e  
grain boundary. The force, f,  is the neck growth 
rate divided by the mobility of the dispersoid 
particles. Under the assumption that all of the 
material to fill in the neck comes from the grain 
boundary, the following relationship exists be- 
tween the neck growth rate, ) ,  and the fractional 
shrinkage, 3); 

27rx2@ = AnX. (28) 
Thus, 

2rrxZ a . 
f - y (29) mA n 

The relationship between the total flux and 
shrinkage rate is 

2 7rx 2 a) 
/ - (30) 

f2 

Using Equations 28, 29, 30 and 10 in Equation 27, 
gives 

o/[ 4Na4(Dv+21rXbDb/aA'n]-X-Ma-~i = ~ 1 + ](31) 

t where A n and X are the neck surface area and 
neck radius normalized to the sphere radius, and 
3)0 is the shrinkage rate without particles, given by 
[14] 



27a(AnDv + 2~XbDb/a) (X + R) 
J~ o = ~k TX4 Ra 3 

(32) 

The influence of particles on the shrinkage 
rate can be anticipated by calculating the magni- 
tude of the second term in the denominator of 
Equation 31. Using restrictions on particle spacing 
and particle size that are similar to those employed 
in the sinusoidal decay model, the maximum value 
of the product Na~ is p2/30. Substituting this and 
the mobility for the particles with 02 = 60 ~ and 
03= 150 ~ gives a magnitude of this term of 
4 x 10-4a(Dv + 27.SbDb/a)/6Di for 1% linear 

/ 

shrinkage (X = 0.20, R = 0.014, A n = 0.045). It 
can be seen that this term is not large unless the 
interracial diffusion coefficient is very much less 
than the volume diffusion coefficient, and sub- 
stantially less than the boundary diffusion coef- 
ficient. This is not surprising, considering the 
relatively long distance that atoms must be trans- 
ported in order for shrinkage to take place, com- 
pared with the distance they must be transported 
to allow the surface dispersoid particle to move. 
It is not known whether the observed retardation 
in shrinkage caused by dispersed oxide particles 
[1-8]  is brought about by the mechanism dis- 
cussed above, or whether the particles interfere 
with the densification mechanisms in other ways. 

The influence of dispersed particles on neck 
growth by surface diffusion can be estimated with 
the help of a simplified surface-diffusion sintering 
model. The flow of atoms into the neck by surface 
diffusion is given by 

47rxf2vDs dp 
s~ ~ 03)  

kT  ds 

where dp/ds is the surface derivative of the press- 
ure beneath the surface approximated by 

dp ~ 2g~ P n - P s  _ 7[P--x-- (2xp/a)]  
ds As 2p 2xp 2 

{ 1 + v [P - x  - (2xp/a)] 

In this equation, Pn is given by Equation 12 and 
Ps is the pressure at the surface of the spheres, 
27/a. The assignment of ~s = 2p is made on the 
basis of the computer-generated surface-diffusion 
sintering model of Nichols and Mullins [15]. The 
total flux is related to the neck growth rate by 
J s ~  = An)). Using this and Equations 33, 34 and 

10, and remembering f = x / m ,  we obtain the 
following: 

J( = 2 1 +MRDA.  Ra2 ] (35) 

where 20 is the normalized neck growth rate 
without particles given by 

20 = 2rrTg22vDs(X--R + 2XR ) 
kTa4R2A, n (36) 

The second term in the denominator of Equation 
35 can be examined using geometric parameters 
obtained from Nichols and Mullins' [15] work. 

t At X = 0 . 2 ,  An =0.13,  R =0.039,  and using 
Na 4= p2/30 and M =  0.34, the second term in 
the denominator of Equation 35 is 0.037/Ra. It 
is quite likely that the magnitude of R a is less 
than 10 -3 , so that surface diffusion-controlled 
sintering will likely be strongly affected by the 
presence of dispersoid particles. 

Although the sintering models are clearly 
approximations, they, nevertheless, indicate trends 
that can be expected. It is more likely that surface 
diffusion-controlled sintering will be more strongly 
inhibited than grain-boundary and volume dif- 
fusion-controlled sintering. This means that the 
sintering in the low temperature regime, where 
surface diffusion is more important, will be more 
sensitive to the presence of dispersed particles 
which retard sintering by this mechanism. 

5. Conclusions 
Dispersed inert particles tend to impede the 
motion of free surfaces under capillarity-induced 
morphological changes, such as sintering and 
surface smoothing. A number of predictions can 
be made on the basis of the models presented 
above. For a given dispersoid particle size, a 
partide which is more buried within the sintering 
material will have a lower mobility, but also a 
lower maximum restraining force, than one which 
is more nearly resting on the surface. The latter 
particles offer little restraint to a receding inter- 
face. Since sintering involves both advancing and 
receding interfaces, it is likely that the more 
buried particles will be more effective in overall 
sintering retardation. The magnitude of the 
effects are such that they should be measurable 
using the well established technique of sinusoidal 
surface smoothing. For a given volume of disper- 
sold particles per unit area, larger, more widely 
separated particles will be more effective in 
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res t ra in ing  surface m o t i o n  t h a n  smaller ,  more  

closely spaced  part ic les .  Surface  dispersoids  are 

more  l ikely to  i nh i b i t  surface  d i f fus ion  s in te r ing  

t h a n  g r a i n - b o u n d a r y  and  vo lume-d i f fus ion  sin- 

te r ing  b y  t he  m e c h a n i s m s  discussed above.  
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